Wir verwenden Cookies, um Inhalte und Anzeigen zu personalisieren. Klicken Sie hier für weitere Informationen.
Hier klicken, um diese Nachricht nicht mehr anzuzeigen.



Agentur für Arbeit Lübeck

Kultur Wissenschaft Ausbildung

Elektrischer Strom durch molekularen Kontakt gemessen

12. November 2009 (HL-red.) Moleküle fest im Griff - Elektrischer Strom durch einen molekularen Kontakt gemessen: Dank der ständig voranschreitenden Miniaturisierung elektrischer Bauteile konnte die Leistungsfähigkeit moderner Elektronik bislang kontinuierlich gestei-gert werden. Allerdings treten schwierige Hürden bei dem Versuch auf, die win-zigen Strukturen im Nanometerbereich weiter zu verkleinern. Zum ersten Mal gelang es nun einer europaweiten Kooperation von Forschern, aus zwei Mole-külen einen Stromkreis zu konstruieren und dessen elektrische Eigenschaften zu untersuchen.
Die Ergebnisse der Forscher aus Deutschland, Frankreich, Spanien und Däne-mark werden in der neuesten Ausgabe der renommierten Fachzeitschrift Physi-cal Review Letters vorgestellt. Die Wissenschaftler verwendeten fußballförmige C60-Moleküle, die einen milliardstel Meter Durchmesser haben und aufgrund ihrer chemischen und physikalischen Eigenschaften großes Potenzial für tech-nische Anwendungen in der Materialwissenschaft und der Nanotechnologie bergen.

Zunächst hoben die Wissenschaftler eines der Moleküle mit der Spitze eines Rastertunnelmikroskops an. Danach bewegten sie es mit einer Präzision von wenigen billiardstel Metern auf ein zweites Molekül zu. Während der Annähe-rung gelang es den Physikern, den elektrischen Stromfluss zwischen den bei-den Molekülen zu messen. Das Verständnis dieses Stroms, der stark von dem Abstand zwischen den Molekülen abhängt, ist für zukünftige molekülbasierte Elektronik unabdingbar.

Die Untersuchung zeigt, dass die Leitfähigkeit zwischen den sich berührenden Molekülen hundertmal geringer ist als für ein einzelnes C60-Molekül und daher nur ein schwacher Strom fließt. Dieses Resultat ist extrem wichtig für neuartige Nanoelektronik, bei der Moleküle dicht gepackt angeordnet sein werden. Denn ungewollte Kurzschlüsse zwischen benachbarten Schaltkreisen könnten mit Hilfe der Moleküleigenschaften unter Kontrolle gebracht werden. Zusätzlich durchgeführte quantenmechanische Berechnungen stehen mit den experimen-tellen Resultaten im Einklang und sagen ebenfalls eine nur geringe Leitfähigkeit zwischen den Molekülen vorher.

Das neu gewonnene Verständnis des elektrischen Stromflusses auf der Nano-meterskala ist ein wichtiger Schritt für die Entwicklung von molekularer Elektro-nik. Zudem eröffnet die von den Forschern vorgeführte extreme Präzision der Manipulation und Kontrolle von einzelnen Molekülen neue Wege zur Erfor-schung möglicher nanoelektronischer Bauteile.




Foto (CAU, Quelle: http://prl.aps.org): Zwei C60-Moleküle in Kontakt (grau). Auf beiden Seiten sind Elektroden zur Strommessung angebracht (gold). Da die Moleküle nur einen milliardstel Meter durchmessen, ist eine extrem hohe Präzision von wenigen billiardstel Metern nötig, um sie kontrolliert zu positionieren. Während der An-näherung untersuchten die Wissenschaftler den Stromfluss durch beide Mole-küle.

Kontakt:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
Christian-Albrechts-Universität, D-24098 Kiel
Telefon: +49 431 880-3946
Email: berndt@physik.uni-kiel.de

Dr. Guillaume Schull
Derzeit: Institut de Physique et de Chimie de Strasbourg
Universite Louis Pasteur
CNRS UMR 7504, F-67034 Strasbourg
Telefon: +33 388 107 172
Email: guillaume.schull@ipcms.u-strasbg.fr


Quelle: Christian-Albrechts-Universität zu Kiel

Impressum